Objectifs
Understanding the nitrogen cycle and its impact in nature.
Introduction
Summary
Introduction
Natural nitrogen cycle
Anthropogenic nitrogen cycle
Outflows and nitrogen cascade
Environmental Impacts
Introduction
Atmosphere's composition :
Dinitrogen N2 78%
Oxygen O2 20%
Argon Ar 9%
Carbon dioxyde CO2 0,40% *
Water vapor H2O 0-3%
Cox, Arthur N., éd. 2002. Allen’s Astrophysical Quantities. 4eéd. New York : Springer-Verlag. https://doi.org/10.1007/978-1-4612-1186-0.
* "Vital signs: Carbon Dioxide". NASA Climate. May 2020. Retrieved 5 June 2020
Dinitrogen molecule
N2, the large amount of energy required to break the nitrogen-nitrogen triple bond makes this structure stable, which is why N2 is the most abundant in air.
Nitrogen reservoirs
Canfield, Donald E., Alexander N. Glazer, et Paul G. Falkowski. 2010. « The Evolution and Future of Earth’s Nitrogen Cycle ». Science 330 (6001): 192‐96.
Nitrogen compounds
|
Why nitrogen is important to life ?
Hint : DNA
Medias
Impossible d'accéder à la ressource audio ou vidéo à l'adresse :
La ressource n'est plus disponible ou vous n'êtes pas autorisé à y accéder. Veuillez vérifier votre accès puis recharger le média.
Impossible d'accéder à la ressource audio ou vidéo à l'adresse :
La ressource n'est plus disponible ou vous n'êtes pas autorisé à y accéder. Veuillez vérifier votre accès puis recharger le média.
Natural nitrogen cycle
Mineralization
Aerobic and anaerobic conditions. |
Assimilation by plants
Nitrification
Takes place under aerobic conditions.
The activity of the microflora is optimal for pH 6.9 to 9 and temperatures between 20 and 36 °C.
Denitrification
The role of lightning
|
QCM
1) What is the name of the process that oxidizes ammonium (NH4+) to produce nitrite (NO2-) and then forms nitrate (NO3-)?
Denitrification
Biological fixation
Nitrification
2) Thanks to their roots, plants are able to absorb atmospheric nitrogen (N).
True
False
3) What are the functions of nitrogen on the planet ?
Participate in photosynthesis
Produce the nitrogenous bases of DNA
Doing cellular respiration
Transporting Oxygen (O2) molecules
Making proteins
Medias
Impossible d'accéder à la ressource audio ou vidéo à l'adresse :
La ressource n'est plus disponible ou vous n'êtes pas autorisé à y accéder. Veuillez vérifier votre accès puis recharger le média.
Impossible d'accéder à la ressource audio ou vidéo à l'adresse :
La ressource n'est plus disponible ou vous n'êtes pas autorisé à y accéder. Veuillez vérifier votre accès puis recharger le média.
Anthropogenic nitrogen cycle
Nitrogen use in manufacturing & processing
Blanketing : Nitrogen gas can be used to flush wine bottles both before and after filling. https://www.generon.com/nitrogen-for-wine-sparging-bottling-blanketing/ |
Nitrogen generator in Beverage processing & packaging On the picture : Juice cartons on packaging production line |
The most important use is for fertilizer
Starter fertilizer can enhance growth and yield by improving access of immobile nutrients |
Nitrogen and fertilizer
The natural process of fixation of atmospheric nitrogen has been amplified by man through an increasing use of industrial fixation of atmospheric nitrogen. |
The Haber-Bosch process
Video to watch :
Nitrogen and the agro-food system
Why does livestock farming produce large quantities of nitrogen-rich effluents ?
Conclusion
QCM
1) What is the Haber-Bosh process?
A process that transforms air into fertilizer.
A process to fix atmospheric dinitrogen in the form of ammonia.
A process that converts ammonia into nitrate.
A process that permit to have available nitrogen in sufficient quantity to allow its industrialization.
2) What are the anthropogenic sources of the nitrogen cycle?
Fossil fuel combustion
Industrial fixation
Deforestation
Crops and livestock
Building construction
Medias
Impossible d'accéder à la ressource audio ou vidéo à l'adresse :
La ressource n'est plus disponible ou vous n'êtes pas autorisé à y accéder. Veuillez vérifier votre accès puis recharger le média.
Impossible d'accéder à la ressource audio ou vidéo à l'adresse :
La ressource n'est plus disponible ou vous n'êtes pas autorisé à y accéder. Veuillez vérifier votre accès puis recharger le média.
Outflows and nitrogen cascade
Introduction
What is on of the main difference between phosphorus, potassium and nitrogen ?
Nitrate goes from the biosphere to the environment by nitrate leaching, gaseous emissions.
Nitrate leaching
Nitrate leaching is highly dependent on rainfall, soil type and soil nitrogen content.
Video to watch
Ammonia volatilization
The presence of ammoniacal nitrogen in a solution in contact with air systematically leads to the volatilization of ammonia.
Volatilization depends very strongly on the physical and chemical conditions of the environment.
the nitrogen content of the substrate in contact with the air ;
the proportion of nitrogen present in the form of ammonia ;
the contact surface between the solution containing ammoniacal nitrogen and the atmosphere ;
the dispersion of the air in contact with the emission zone.
Nitrogen oxides and nitrous oxide emissions
The parameters which are likely to intervene to regulate the proportion of nitrous oxide formed during denitrification are :
|
In addition to nitrous oxide emissions, there are nitric oxide emissions, rather observed in dry environments, and associated with nitrification situations.
Nitrogen oxides, mainly NOx (NO2 and NO) and nitrous oxide (N2O) are emitted during nitrification and/or denitrification reactions, both in the field and in livestock buildings (bedding, effluent storage areas).
The nitrogen cascade
Simplified view of the nitrogen cascade, highlighting the major anthropogenic sources of reactive nitrogen (Nr) from atmospheric dinitrogen (N2), the main pollutant forms of Nr (orange boxes) and nine main environmental concerns (blue boxes). Estimates of anthropogenic N fixation for the world (Tg /yr for 2005, in black) are compared with estimates for Europe (Tg /yr for 2000, in blue italic). Blue arrows represent intended anthropogenic Nr flows; all the other arrows are unintended flows.
QCM
1) Nitrogen is characterized by a great ability to leave the soil-plant-animal cycle
True
False
2) Nitrate leaching losses increase when fertilizer applications are in excess of the crop need.
True
False
3) What is the physical and chemical condition of the environment on which the volatilization of ammonia depends?
the nitrogen content of the substrate in contact with the air.
the proportion of nitrogen present in the form of ammonia.
the proportion of nitrogen present in the form of nitrate.
the contact surface between the solution containing ammoniacal nitrogen and the atmosphere.
the soil aeration.
the dispersion of the air in contact with the emission zone.
Medias
Impossible d'accéder à la ressource audio ou vidéo à l'adresse :
La ressource n'est plus disponible ou vous n'êtes pas autorisé à y accéder. Veuillez vérifier votre accès puis recharger le média.
Impossible d'accéder à la ressource audio ou vidéo à l'adresse :
La ressource n'est plus disponible ou vous n'êtes pas autorisé à y accéder. Veuillez vérifier votre accès puis recharger le média.
Environmental Impacts
The nitrogen cascade
Small reminder :
This cascade of unintentional flows of reactive nitrogen is accompanied by a cascade of harmful consequences for the environment, the climate and human health.
When reactive nitrogen returns in the form of inert atmospheric nitrogen dioxide, it has potentially crossed several compartments in several forms in excessive quantities, and thus contributed to different environmental impacts on all of our planet.
1. Health impacts
Ammonia
NH3 - Health effects of ammonia are indirect through contribution of NH4+ to particulate matter (PM).
Ammonia emissions significantly contribute to the formation of secondary particulate matter in the atmosphere (~ 20% by mass).
The main source of ammonia in the atmosphere is agriculture.
Nitrogen dioxide (NO2)
It is a toxic gas that has adverse health effects both in the long term (chronic) and short term (acute). Data from Europe suggested that long-term concentrations of nitrogen dioxide or nitrogen oxides (NO) were associated with an increased risk of all-cause mortality. Nitrogen dioxide is strongly related to particulate matter. |
Particulate matter (PM)
NO2 and NH3 - Reactive nitrogen contributes to particle mass and to the adverse health effects caused by the PM. |
Ozone
NO2 and NH3 - Reactive nitrogen contributes to particle mass and to the adverse health effects caused by the PM. |
Ecosystems
Ammonia
Atmospheric ammonium is absorbed by the leaves of plants. More precisely through the stomata, where gas exchanges take place. Atmospheric ammonium is absorbed by the leaves of plants. More precisely through the stomata, where gas exchanges take place. Before reaching the leaf, the pollutant will first have to pass through the “boundary layer”. |
Lichens are very affected by atmospheric pollution because they not have a impermeable cuticle. Lichens and bryophytes are an important part of the ecosystem integrity. https://www.irishtimes.com/news/science/the-trouble-with-ammonia-1.3721098 |
Ammonia acts as a macro-nutrient and at low exposure levels plants respond by increasing their biomass production. Because plant growth is often limited by the supply of nutrient nitrogen, and so any increases in growth may lead to negative effects on community composition. The fertilisation effect can at higher exposure levels lead to secondary long-term adverse effects including increased susceptibility to abiotic (drought, frost) and biotic stresses. |
Oxides of nitrogen
Oxides of nitrogen can have a fertiliser effect, but can also be toxic to plants, depending on concentrations.
At low concentrations typical of ambient conditions, nitrogen oxides is more phytotoxic than nitrogen dioxide.
As for ammonia, the growth stimulation was also considered as potentially adverse for (semi-) natural vegetation owing to potential negative effects on community composition.
Today ozone is considered to be the most important gaseous pollutant causing effects on vegetation. Besides visible injuries on leafs and needles, ozone also causes premature leaf loss, reduced photosynthesis and reduced leaf, root, and total dry weights in sensitive plant species. https://extension.umd.edu/learn/air-pollution-effects-vegetables |
Today ozone is considered to be the most important gaseous pollutant causing effects on vegetation. Besides visible injuries on leafs and needles, ozone also causes premature leaf loss, reduced photosynthesis and reduced leaf, root, and total dry weights in sensitive plant species. This leads to significant decrease in productivity of some agricultural crops and to reduced forest production. Effects of ozone on vegetation: from plant cells to ecosystems. [Source: © J.P. Garrec] |
Effects on materials
Corrosion of materials was originally mostly associated with air pollution by sulphur dioxide; however know that nitric acid (HNO3), ozone and particulate matter also contribute significantly to the negative effect of air pollution on materials.
The lifetime of technological products is shortened because of air pollution.
Water Pollution
How does nitrogen get into drinking water?
https://www.dvgw.de/english-pages/topics/water/nitrates-and-drinking-water/
The regulatory level is usually met for public water supplies, which are routinely monitored. In the EU, noncompliance to the nitrate or nitrite standards in large public supplies is reported regularly but rarely exceeds % of the sample population. Bryan, Nathan S., et Hans van Grinsven. « The Role of Nitrate in Human Health ». In Advances in Agronomy, 119:153‐82. Elsevier, 2013.https://www.sciencedirect.com/science/article/abs/pii/B9780124072473000032?via%3Dihub |
Effects of nitrogen rich drinking water on human health
Nitrate itself is generally considered to be harmless at low concentrations. Nitrite, on the other hand, is reactive especially in the acid environment of the stomach where it can nitrosate other molecules including proteins, amines and amides. |
Eutrophication
|
Factors controlling eutrophication can be summed up as a combination of some or all of the following interacting factors:
Fig. Functional linkages between hydrology, anthropogenic nutrient inputs, eutrophication (phytoplankton blooms), and hypoxia/anoxia in estuarine and coastal aquatic ecosystems. Paerl, Hans W. « Assessing and Managing Nutrient-Enhanced Eutrophication in Estuarine and Coastal Waters: Interactive Effects of Human and Climatic Perturbations ». Ecological Engineering 26, no 1 (janvier 2006): 40‐54. |
https://www.unenvironment.org/nowpap/what-we-do/prevent-and-reduce-pollution/eutrophication |
Video to watch
Eutrophication and dead zones | Ecology | Khan Academy
https://www.youtube.com/watch?v=AxaWXWd2pw4
The difference between natural and anthropogenic eutrophication is time. |
Soil pollution
Soil quality and functions
Effect of soil degradation on nitrogen
|
|
|
|
|
Effect of nitrogen on soil
Nitrogen as a threat to biodiversity
What is biodiversity ?
Video to watch :
https://www.youtube.com/watch?v=GK_vRtHJZu4&t=36s
Ecosystems can be defined by both their sensitivity and their vulnerability to a stress such as enhanced nitrogen deposition. The major impacts of nitrate deposition on terrestrial ecosystem diversity are through :
|
|
Jones, L., A. Provins, M. Holland, G. Mills, F. Hayes, B. Emmett, J. Hall, et al. « A Review and Application of the Evidence for Nitrogen Impacts on Ecosystem Services ». Ecosystem Services 7 (1 mars 2014): 76‐88. https://doi.org/10.1016/j.ecoser.2013.09.001. |
Figure. Schematic of the main impacts of enhanced N deposition on ecosystem processes and species richness. Stress is considered to occur when external constraints limit the rate of production of vegetation; disturbance consists of mechanisms that affect plant biomass by causing its partial or total destruction. Sutton, Mark A., éd. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge: Cambridge Univ. Press, 2011. |
Example : Red-backed shrike
Medias
Impossible d'accéder à la ressource audio ou vidéo à l'adresse :
La ressource n'est plus disponible ou vous n'êtes pas autorisé à y accéder. Veuillez vérifier votre accès puis recharger le média.
Impossible d'accéder à la ressource audio ou vidéo à l'adresse :
La ressource n'est plus disponible ou vous n'êtes pas autorisé à y accéder. Veuillez vérifier votre accès puis recharger le média.
Bibliography
Asman, Willem A. H., Mark A. Sutton, et Jan K. Schjorring. « Ammonia: Emission, Atmospheric Transport and Deposition ». New Phytologist 139, no 1 (mai 1998): 27-48. https://doi.org/10.1046/j.1469-8137.1998.00180.x.
Baek, Bok Haeng, Viney P. Aneja, et Quansong Tong. « Chemical Coupling between Ammonia, Acid Gases, and Fine Particles ». Environmental Pollution 129, no 1 (mai 2004): 89-98. https://doi.org/10.1016/j.envpol.2003.09.022. Billen, Gilles, Arthur
Beusen, Lex Bouwman, et Josette Garnier. « Anthropogenic Nitrogen Autotrophy and Heterotrophy of the World’s Watersheds: Past, Present, and Future Trends: AUTO/HETEROTROPHY OF WORLD’S WATERSHEDS ». Global Biogeochemical Cycles 24, no 4 (décembre 2010): n/a-n/a. https://doi.org/10.1029/2009GB003702.
Bobbink, R., K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, M. Bustamante, et al. « Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: A Synthesis ». Ecological Applications 20, no 1 (janvier 2010): 30-59. https://doi.org/10.1890/08-1140.1.
Bolan, Nanthi S, Domy C Adriano, et Denis Curtin. « Soil Acidification and Liming Interactions with Nutrientand Heavy Metal Transformationand Bioavailability ». In Advances in Agronomy, 78:215-72. Elsevier, 2003. https://doi.org/10.1016/S0065-2113(02)78006-1.
Bryan, Nathan S., et Hans van Grinsven. « The Role of Nitrate in Human Health ». In Advances in Agronomy, 119:153-82. Elsevier, 2013. https://doi.org/10.1016/B978-0-12-407247-3.00003- 2.
Canfield, Donald E., Alexander N. Glazer, et Paul G. Falkowski. « The Evolution and Future of Earth’s Nitrogen Cycle ». Science 330, no 6001 (8 octobre 2010): 192-96. https://doi.org/10.1126/science.1186120.
Cox, Arthur N., éd. Allen’s Astrophysical Quantities. 4e éd. New York: Springer-Verlag, 2002. https://doi.org/10.1007/978-1-4612-1186-0.
Vries, W. de, S. Solberg, M. Dobbertin, H. Sterba, D. Laubhann, M. van Oijen, C. Evans, et al. « The Impact of Nitrogen Deposition on Carbon Sequestration by European Forests and Heathlands ». Forest Ecology and Management 258, no 8 (septembre 2009): 1814-23. https://doi.org/10.1016/j.foreco.2009.02.034.
Decau, M. L., J. C. Simon, et A. Jacquet. « Nitrate Leaching under Grassland as Affected by Mineral Nitrogen Fertilization and Cattle Urine ». Journal of Environmental Quality 33, no 2 (mars 2004): 637-44. https://doi.org/10.2134/jeq2004.6370.
Duxbury, John M. « The Significance of Agricultural Sources of Greenhouse Gases ». Fertilizer Research 38, no 2 (1994): 151-63. https://doi.org/10.1007/BF00748775.
Fangmeier, Andreas, Angelika Hadwiger-Fangmeier, Ludger Van der Eerden, et Hans-Jürgen Jäger. « Effects of Atmospheric Ammonia on Vegetation—A Review ». Environmental Pollution 86, no 1 (1994): 43-82. https://doi.org/10.1016/0269-7491(94)90008-6.
Fowler, David, Mhairi Coyle, Ute Skiba, Mark A. Sutton, J. Neil Cape, Stefan Reis, Lucy J. Sheppard, et al. « The global nitrogen cycle in the twenty-first century ». Philosophical Transactions of the Royal Society B: Biological Sciences 368, no 1621 (5 juillet 2013): 20130164. https://doi.org/10.1098/rstb.2013.0164.
Galloway, J. N., F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, et al. « Nitrogen Cycles: Past, Present, and Future ». Biogeochemistry 70, no 2 (septembre 2004): 153-226. https://doi.org/10.1007/s10533-004-0370-0.
Galloway, James N., John D. Aber, Jan Willem Erisman, Sybil P. Seitzinger, Robert W. Howarth, Ellis B. Cowling, et B. Jack Cosby. « The Nitrogen Cascade ». BioScience 53, no 4 (2003): 341. https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2.
Gruber, Nicolas, et James N. Galloway. « An Earth-System Perspective of the Global Nitrogen Cycle ». Nature 451, no 7176 (janvier 2008): 293-96. https://doi.org/10.1038/nature06592.
Howarth, Robert, Francis Chan, Daniel J Conley, Josette Garnier, Scott C Doney, Roxanne Marino, et Gilles Billen. « Coupled Biogeochemical Cycles: Eutrophication and Hypoxia in Temperate Estuaries and Coastal Marine Ecosystems ». Frontiers in Ecology and the Environment 9, no 1 (février 2011): 18-26. https://doi.org/10.1890/100008.
Krupa, S.V. « Effects of Atmospheric Ammonia (NH3) on Terrestrial Vegetation: A Review ». Environmental Pollution 124, no 2 (juillet 2003): 179-221. https://doi.org/10.1016/S0269- 7491(02)00434-7.
Lassaletta, Luis, Gilles Billen, Josette Garnier, Lex Bouwman, Eduardo Velazquez, Nathaniel D. Mueller, et James S. Gerber. « Nitrogen Use in the Global Food System: Past Trends and Future Trajectories of Agronomic Performance, Pollution, Trade, and Dietary Demand ». Environmental Research Letters 11, no 9 (septembre 2016): 095007. https://doi.org/10.1088/1748-9326/11/9/095007.
Le Noë, J., G. Billen, F. Esculier, et J. Garnier. « Long-Term Socioecological Trajectories of AgroFood Systems Revealed by N and P Flows in French Regions from 1852 to 2014 ». Agriculture, Ecosystems & Environment 265 (octobre 2018): 132-43. https://doi.org/10.1016/j.agee.2018.06.006.
Nicolardot, Bernard, et J. Claude Germon. « Emissions de méthane (CH4) et d’oxydes d’azote (N2O et NOx) par les sols cultivés. Aspects généraux et effet du non travail du sol ». Etude et Gestion des Sols 15, no 3 (2008): 171-82. Paerl, Hans W. « Assessing and Managing Nutrient-Enhanced Eutrophication in Estuarine and Coastal Waters: Interactive Effects of Human and Climatic Perturbations ». Ecological Engineering 26, no 1 (janvier 2006): 40-54. https://doi.org/10.1016/j.ecoleng.2005.09.006. Peyraud, J.-R. Réduire les pertes d’azote dans l’élevage: expertise scientifique collective. Versailles: Ed. Quæ, 2014.
Powlson, David S., Tom M. Addiscott, Nigel Benjamin, Ken G. Cassman, Theo M. de Kok, Hans van Grinsven, Jean-Louis L’hirondel, Alex A. Avery, et Chris van Kessel. « When Does Nitrate Become a Risk for Humans? » Journal of Environmental Quality 37, no 2 (mars 2008): 291-95. https://doi.org/10.2134/jeq2007.0177.
Rabalais, Nancy N. « Nitrogen in Aquatic Ecosystems ». AMBIO: A Journal of the Human Environment 31, no 2 (mars 2002): 102-12. https://doi.org/10.1579/0044-7447-31.2.102.
Stein, Lisa Y., et Martin G. Klotz. « The Nitrogen Cycle ». Current Biology 26, no 3 (8 février 2016): R94-98. https://doi.org/10.1016/j.cub.2015.12.021.
Sutton, Mark A., éd. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge: Cambridge Univ. Press, 2011.
Vicente Vicente, José. « Soil organic carbon sequestration in Andalusian olive groves: effect of the managements on soil organic carbon dynamics », 2017. Nitrogen Cycle - for A level, 2019. https://www.youtube.com/watch?v=jvkjTXPXoLA.
« European Nitrogen Assessement - Summary for Policy Makers ». Consulté le 3 octobre 2020. https://www.researchgate.net/publication/254838099_European_Nitrogen_Assessement_- _Summary_for_policy_makers.